

Unit Name: Dalmia Cement Bharat Limited, Belgaum

Members:

Mentor: Mr. Prabhat Kumar Singh (Unit Head) Mr. Manish Kumar Maheshwari (Technical Head)

Presenting team:

- 1. Mr. Samir Tayal (Senior Manager)
- 2. Mr. Ajeet Singh Rai (Assistant General Manager)
- 3. Mr. Bestavemula Amrutesh (Manager)

Dalmia Cement Profile

- Founded in 1939 By Shri Jaidayal Dalmia
- 15 Cement Plants spread across 11 States
- Cement Capacity of 45.6 Million Tons
- 4th Largest Cement Manufacturer in India
- ISO Certified Company

- 1st Indian company to join both RE100 as well as EP100
- Target for Carbon Negative by year 2040
- Sustainable Solution for MSW
- Swatch Bharat Abhiyan
- Highest AFR (TSR%) and further targeting for 50% in FY26

Dalmia, BELGAUM Profile

MAJOR PROCESS/EQUIPMENT SPECIFICATION

Specific Electrical Energy Consumption from FY21 to FY24

SPC Clinkerization (kWh/t clk)
SPC Cement (Kwh/t cem)
SPC Cement

- Continuous improvement is visible in Cement SPC,
 Clinkerisation SPC and hence overall Cement SPC
- ✓ New PH fans installed of high efficiency @82%+ in FY24
- Preheater modification (Cy. 2,3,4) done to reduce pressure drop in FY24, investment 29 Cr.
- ✓ Compressor power reduction by 3000 kwh by reducing pressure and implementing Air leakage tracker system
- ✓ RA Fan optimization (RA Fan run hrs <5 hrs)
- ✓ Improvement in CM Reliability
- Raw Mill Operation Optimization (LS size reduction, hydraulic pressure reduced, fan speed reduced)

Specific Electrical Energy Consumption from FY21- FY24

Cement SPC □ OPC SPC □ PPC SPC □ DSP SPC 45 40.8 39.8 40 35.9 33.6 33.4 33 4 33.1 35 30.5 30 26.5 25.9 24.5 25 20 15 10 5 0 **FY 21 FY 22 FY 23 FY 24**

- ✓ Installation of 23 nos. of VFD in auxiliary bagfilter
- Improvement in Reliability and MTBF
- FY24 addition of New Ball Mill to increase cement capacity
- ✓ Optimized operation of Aux BFs
- ✓ Usage of LP compressor in Fly Ash unloading
- ✓ Usage of Fly ash up to 35%

Alternate Fuel TSR (%)

- ✓ Installation of Solid AFR **feeding system** of 25 tph capacity
 - ✓ Installation of Shredder (25 tph + 15 tph) for size reduction
 - of Solid AFR for complete combustion
 - ✓ Installation of Chlorine Bypass System
 - ✓ Modification of **Preheater**, increase **Calciner Height**
 - Upgraded PH fan Capacity
 - ✓ Installation of Trommel
 - ✓ **Raw mix** modified at 35% AFR TSR
 - ✓ Solid feeding @ 750-800 tpd and Liquid @ 50-60 KL per day
 - ✓ **Targeting for 50% AFR TSR%** by FY25 closing

Specific Thermal Energy Consumption (kcal/kg clk)

- ✓ Modification of **Preheater**, increase **Calciner Height**
- $\checkmark\,$ Modification of TAD and Kiln inlet riser
- Modification of Stage 2,3,4 cyclone. Height increased by 300mm (15 kcal/kg clinker)
- ✓ Cooler Modification (30 kcal/kg clk
- Optimized PH fan Operation to maintain O2 <2.5% at
 PH Outlet
- ✓ **Raw mix** modified at 35% AFR TSR

Long term/Short term targets taken in FY25

SI. No.	КРІ	UoM	FY24 Achieved	FY25 Target	Improvement w.r.t FY24	% Reduction	Project description
1	Clinker Volume	KMT	1659	2083	424	26%	
2	Clinker TPD	TPD	5698	6200	502	9%	
2	AFR TSR	%	33.8	41	7	21%	
3	Clinker SPC	Kwh/t clk	51.6	50	1.6	3%	
4	Clinker SHC	Kcal/kg clk	731	720	11	2%	
5	RE Power	%	73	80	8	9%	
6	Cement Volume	KMT	2232	2983	751	49%	
7	Cement SPC	Kwh/t cem	31.2	30.5	0.7	2%	
8	GHG Emission	Kg CO2/t cem	421	330	90	21%	

Roadmap – ENCON Projects planned in FY25

SI. No.	Project Title	Investment (millions)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact or SEC/ SHC	Project description
1	High Efficiency Blowers	10	0.47	0	3.9	0.24	To reduce Clinker SPC Replacement of existing Lube blowers with Energy efficient screw blowers
2	Raw Mill Fan Inlet Duct modification	2	0.51	0	4.2	0.26	To Reduce Clinker SPC
3	RABH Fan Inlet Duct modification	2	0.63	0	5.1	0.32	Modification Fan Inlet duct to reduce pressure drop and
4	PH Fan 1 & 2 inlet box modification	4	1.1	0	9.0	0.56	hence reduce the power consumption
5	CM1 BH Pr. drop reduction by conducting CFD Study	2	0.32	0	2.6	0.16	Reduce cement SPC
6	Reduction of Pr. Drop in DC Duct by conducting CFD	10	0.72	0	5.9	0.37	Reduce Clinker SPC
7	Solar power Plant (2MW)	100	3.27	0	24.3	-	On Ground On site Solar Power plant of 2MW in addition of 8MW
8	PH Boiler upgradation to increase 2 MW generation	133	15.84	0	112.8	-	Boiler Pressure parts modification to reduce PH boiler outlet temp to 190 Deg C to increase WHRS Generation
9	AFR Phase 3,4,5	990	0	219000	448.5	-	Installation of additional 40 tph shredder and 60 tph feeding capacity along with Trommels and ballistic separator to reduce moisture and Ash
10	Chlorine Bypass Boiler	200	3.16	0	22.6	-	Installation of Boiler in chlorine bypass to encash the heat loss happening through Chlorine bypass

ROAD MAP TO ACHEIVE BENCHMARK

INNOVATIVE PROJECTS

Name of the Project	Brief description	Trigger for implementing the project	Project category (A/B/C/D)	Replicability	Total Annual Savings (Rs. lakhs)	Investment (Rs. Lakhs)
Trommel screen modification	Recycled waste TSR performance continuously coming 36-38% with increasing the clinker production > 6100 MT. For achieve the target, we are feeding the solid wet qty > 730 tpd on consistence basis but shredded material unavailability in the market and higher rate challenges of shredded material.	We have changed the trommel screen to 80 mm size from 40 mm size for screening of the shredded material from un-shredded material & it is giving the shredded material 125 mt/day. Trommel over size material is going in the shredder & it is giving the shredded material > 65 mt/day. Its handling managing with internal resources. This has increased the shredded material 190 MT/day, after that we have reduced the purchased market shredded material. Recycled waste Monthly saving is 72 Rs. L.	В	Yes	861	170
Pyro Performance Enhancement	 TAD modification Cy. 2,3,4 height increased Kiln inlet riser widened Cooler plates replaced PH Fan upgraded PH Boiler tapping revised Pyroclone height increased 	 Constraint in increasing the kiln feed, AFR feeding, high CO generation in system, high PH pressure drop Loss of WHRS generation due to PH boiler tapping from PH Fan Outlet Low cooler recuperation efficiency 	D	Yes	Improvement TPD – 1000 TSR – 6% SHC – 40 Kcal SPC – 1 kwh/t clk	8200

ENCON PROJECTS SUMMARY

SI no	Years	No of Projects	Investment (Rs million)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact on SEC/ SHC (Electrical kWh /MT cement or Kcal/Kg cement)
1	FY 2021-22	2	6	0.87	0	6.3	0.5 kwh/t clk
2	FY 2022-23	5	2	4.0	0	34.3	2.1 kwh/t clk
3	FY 2023-24	4	2900	5.1	66000	177	2.1 kwh/t clk 40 kcal/kg clk *Cem Mill Mod. (addition of New Ball Mill) for Capacity Enhancement
4	AFR / RE projects in last 3 years	5	2297	81.3	326250	1197	AFR – 5% to 37% WHRS – 9MW Solar – 8MW

ENCON PROJECTS (2021 – 2022)

SI no	Project Title	Investmen t (millions)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact on SEC/ SHC	Project description
1	VFD installation in Aux BFs (23 nos.)	6	0.51	0	3.7	0.3	VFDs installed in aux BFs to reduce aux BF fan speed and hence power saving
2	RA Fan Optimization to reduce SPC of RABH Fan	0	0.36	0	2.6	0.2	Inhouse optimization of RA fan is been done. Put in automation to reduce the RA fan run hours and consequently SPC of RA Fan and RABH Fan

ENCON PROJECTS (2022-2023)

SI no	Project Title	Investment (Rs million)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact on SEC/ SHC	Project description
1	VFD installation in Compressors	2	0.28	0	2.4	0.17	VFD installed in 1 compressors of cement mill section and 1 compressor of pyro section and put it in Auto mode with main receiver pressure. This is done to reduce the unloading time of compressor
2	Coal mill Baghouse Purging optimization to reduce Compressor power	0	0.28	0	2.4	0.17	Pause time increased from 4 sec to 12 sec without hampering the Baghouse DP
3	Raw Mill Optimization to reduce SPC	0	1.27	0	10.9	0.5	TPH and SPC are varying significantly from LS pile to Pile. Detailed analysis done of many LS piles and Breakeven point identified to operate at particular range of TPH to minimize the SPC
4	Dense Phase Compressor optimization to reduce SPC	0	1.16	0	10.0	0.7	 Pressure reduce to minimum for dense phase conveying Put in Auto with Bin level to stop compressors as soon bin is emptied.
5	Compressed air Optimization	0	0.997	0	8.6	0.6	Pressure reduced to 5.2 at receiver, Installation of Air receiver, shifting of Small Compressor in LS Crusher, Leakage Arresting system developed via SAP

ENCON PROJECTS (2023-2024)

SI no	Project Title	Investment (Rs million)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact on SEC/ SHC	Project description
1	PH Modification (Reduce Pressure drop in PH) to reduce SPC, SHC and increase productivity	290	1.33	24750	61.5	15	It is a 6 stage cyclone and Stage 2,3,4 modified, along with TAD and its feeding point modification
2	Cooler Upgradation	280	0	41250	84.5	25	For improving the recuperation efficiency of cooler from 60% to 70%, all cooler plates replaced with latest technology (conda nozzle effect)
3	Cement Mill Capacity Enhancement	2240	1.1	0	8.9	0.5	In Existing set up of 2 RP and 1 BM, 1more ball mill added and 2 separate circuits created (R.P+BM). THis is benefited in increase the Capacity from 8000TPD to 11000 TPD and reduction in SPC by 0.5 kwh/t cem
5	New PH Fan (for capacity enhancement and High Impeller Efficiency)	90	2.66	0	21.7	1.6	New PH Fans (2 nos. double string PH) installed of higher capacity and high impeller efficiency to increase clinker production and reduce PH fan SPC

ENCON PROJECTS (AFR/RE)

SI no	Project Title	Investment (millions)	Annual Electrical Saving (million Kwh)	Annual Thermal Saving (million Kcal)	Total Annual Savings (Rs million)	Impact on SEC/ SHC	Project description
1	Installation of Chlorine Bypass System to increase TSR%	250	0	163125	293.5	0	Achieved TSR % from 20% to 35%, Chlorine bypass system is installed to reduce the chlorine % in the clinker (<0.1%) and to remove the volatiles (alkali, sulphur, chlorine) from the system to avoid coating, ring formation at kiln inlet and riser also.
2	AFR Phase 2 (Adding Capacity of Shredding and feeding of Solid AFR and Liquid AFR)	220	0	163125	293.5	0	Achieved TSR% from 05% to 20%, Installation of shredder (25 tph) and extractor with feeding capacity up to 25 tph.
3	Installation & Commissioning of WHRS (9MW)	1207	60.19	0	455.7	0	WHRS installed of 9MW in PH side and Cooler Side along with HAR system in Cooler
4	Solar Power Plant (8MW DC, 6.8MW AC)	500	13.20	0	97.9	0	On Site Solar Power plant installed
5	PH Boiler Tapping Revised from PH Fan Outlet to Inlet	120	7.92	0	56.4	0	During Phase 1 WHRS project, PH boiler tapping was considered from PH Fan outlet which is later on shifted to before PH Fan (Downcomer duct at 5th floor)

Green Energy – WHRS

WHRS Contribution (%)

- ✓ Installed Capacity : 9.0MW
- ✓ Commissioned on 13.09.2022
- ✓ FY25YTD contribution increased to **34%**
- ✓ FY25 Targeting for 40% in FY25 closing
- Increase 2MW by PH Boiler pressure parts modification
- ✓ FY23 180 Lakh Unit Net generation
- ✓ FY24 achieved 432 Lakh Unit Net generation
- ✓ FY25 Targeting for 625 Lakh Unit

Total RE (%)

- ✓ Onsite Solar plant of 8MW
- FY25 Group Captive of 11 MW (2.2*5-Wind) for 1 year, **3.2 Cr. Units** started from May 2024.
- ✓ FY25 RE power will go up to 50%
- ✓ FY26 RE power will go up to 60%
- ✓ FY26 Long term contracts (Solar) in the group captive scheme for 25 years, ~5 Cr. Units per year
- ✓ FY26 Initiated to have Group captive of (Solar/Wind/Hydro) for 1 year @ 4 Cr. Units
- ✓ Third party RE for Solar and Wind


```
RE Offsite (%)
```


- ✓ Installed Capacity of Solar Plant: 8.0MW
- Commissioned in Jan 2024
- ✓ FY25 RE Onsite will go to 7%

- ✓ Third party RE for Solar and Wind
- Group Captive of 11 MW (2.2*5 MW Wind) for 1 year,
 3.2 Cr. Units started from May 2024
- ✓ FY26 Long term contracts (Solar) in the group captive scheme for 25 years 43.5 MW, ~5 Cr. Units per year
- ✓ FY26 Initiated to have Group captive of (Solar/Wind/Hydro) for 1 year @ 4 Cr. Units
- ✓ FY25 RE offsite will go up to 43%
- ✓ FY26 RE Offsite will go up to 53%

RE – Solar and Wind

PAT Achivements (PAT Cycle 6)

□ Kcal/kg of equivalent cement

- ✓ Baseline **1077** kcal/kg of equivalent cement
- ✓ Target **1017** kcal/kg of equivalent cement)
- ✓ Target Reduction of **5.6%** (i.e. **60** kcal/kg of eq. cement
- ✓ Achieved **29.5%** reduction i.e. **318** Kcal/kg of eq. cement

✓ 35000 Ecerts

- Major Actions taken are
- a. WHRS of 9MW,
- b. Preheater & TAD modification for heat reduction
- c. AFR TSR% increased to ~35%
- d. Cooler modification for heat reduction by 25 Kcal/kg clk
- e. 100% Petcoke utilization

RE Certificates Purchased

✓ REC purchased till FY22

✓ From FY23, RPPO compliance is achieved by

consuming Solar and Wind (Onsite and offsite)

UTKARSH – "Brainstorming Session on Energy Reduction"

OUTCOMES/ACTION PLAN

- AFR TSR Roadmap of 50 % by FY25
- SPC Clinkerisation Reduction by 1.5 kwh/t clk
- SHC Reduction plan of 5-6 Kcal/kg clk
- SPC Cement 1.5 kwh/t cem
- RE Power Increase up to 80% (including WHRS) in FY25 and 100% by FY27

Brainstorming Session / Huddle activity for Energy Saving Ideas

- All talents were divided into 7 teams with cross functional team members for energy and brainstorming done for 1 hour
- Subsequently the outcomes were collected, polished, checked feasibilities and delegated to all Hods for implementation

GHG Inventorisation

Scopes

Emission of Kg CO_2 per tonne of cement get decreased continuously due to the following efforts done by the Unit:

- Maximize the uses of Alternative Fuel Resources (both Hazardous and Non-hazardous) from TSR 17% to 38 % to reduce the CO₂ emission in Scope-1 from 573 to 421 Kg CO₂/tone of Cement.
- DCBL, Belagavi has stop the power generation from CPP and install WHRS (09 MW), Solar Power Plant-08 MW and third party RE power contracts to meet the power demand. Therefore, CO₂ emission in Scope-2 was decreased from 60 to 14 Kg CO2/ton of Cement.
- 3. As transportation of Alternative fuel increase which bulk density is less than the density of conventional fuel but, still we are working to reduce its impact.

Future Target, Information on GHG Inventorisation and public disclosure:

Commitments on Global Level

- 1. Carbon Negative by 2040
- The company became the first organization globally, to commit to both Fossil Free Electricity Initiative (RE 100) and Energy Productivity (EP 100) campaigns and Water Positivity.
- 3. DCBL has moderated its emissions in line with the International Energy Agency's (IEA) 2° scenario mandated for 2030

Major actions under pipeline for carbon Negative

- 1. Introduction of Composite Cement by Dec'24
- 2. Increase AFR from 33.8% to 50% by Jan'25
- 3. Increase WHRS gen from 9MW to 11 MW in Dec'24
- 4. Modifications planned to reduce **SPC by 1.5kwh/t** in FY25
- 5. Water Positivity Harvesting More Water Than We Consume

How Do We Do It?

Alternate Power

Dalmia Cement joined the Fossil Free Electricity Initiative to commit to a long-term transition to renewable energy. It has identified 40 MW green power generation potential through waste heat recovery from exit gases in its plants.

Alternate Raw Material

Dalmia Cement engages with iron and steel, petroleum, power and other sectors to utilise their wastes. Its Ariyalur plant was the first in India to engage in a trial burn study co-processing tannery ETP sludge in the presence of CPCB officials.

Alternate Fuel

The company is switching from fossil fuels to green fuels, including biomass. It has accelerated the use of industrial and municipal wastes to replace the use of fossil fuels in pyro-processing, helping it to avoid fuel-related CO2 emissions.

Other Initiatives

By participating in various other initiatives involving clean water and sanitation, affordable and clean energy, responsible consumption and production, and business and biodiversity, the company ensures that processes are environment-friendly.

Total Waste Consumption as Alternate Fuel

Journey towards Carbon Negative – 50% TSR

Green Supply Chain

INPUT

Utilization of waste

GCP Dust- waste of Iron industry

Utilization of Petcoke 100%

as Fuel

Unloading of material through tippler

TRANSPORT

Using Solid and Liquid Waste Efficientt Process/Technology Latest Pyro Processing

Using Low LSF Mines Mat.

Equipment Advance Grinding Mill **Optimized Process** Energy Monitoring & Utilization

GRINDING

Utilization of waste

Pond Ash Fly Ash Slag Sit Dust

PACKING AND LOGISTIC

Product Logistic

Given preference of green supply trucks for ce back loading Bulk & Trade Dispatch Improvement Utilization of Vehicle Master & Tracking Material Management & Planning

Dalı

Energy Policy and ISO Certification

Energy Management System Standard ISO

- ✓ Certificate no. 10000425914-MSC-RvA-IND
- ✓ Validity 07 December 2023 06 December 2026

Awards

DCBL stands tall and proud at the 17th NCB International Conference

QCFI 3rd National Sustainability Awards on Cement & RMC

DCBL's Belgaum unit emerges as the winner at the CII 3R Awards 2022

Triumph of Our Endeavors

CII Excellent Energy efficient plant award 2022

Sustainable Waste Management and Circular Economy and IPLA Global Form 2023

<image><image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Excellence in In-House Water Management Award by CII 2018-19

Thank You !!

Samir Tayal Process Optimization/Improvement Manager 9755042571 tayal.samir@dalmiacement.com

Page33 8 September 2024